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Abstract In this work we deal with a nonlinear three point singular boundary value
problems (SBVPs), when the nonlinearity depends upon derivative. We establish the
maximum principles for linear model. Prove some new inequalities based on Bessel
and modified Bessel functions. Finally by using the Monotone Iterative Technique,
we obtain some new existence results with well order and reverse order upper and
lower solutions. The method developed in this paper can be used in computer algebra
to compute solutions of real life problems.
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1 Introduction

The appropriate equation for the thermal balance between the heat generated by the
chemical reaction and that conducted away can be written as

∇2 u(P) = f (P, u(P), du(P)/d P), (1)

after some simplification and due to geometric similarity, we arrive at the following
differential equation
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− y′′(x) − n

x
y′(x) = f (x, y, xn y′), 0 < x < 1, (2)

where n corresponds to geometry of the vessel under consideration. In this work we
consider the case when n = 1, i.e., the reaction is taking place in cylindrical vessel
whose length is much greater than the radius. Thus we have the following singular
differential equation

− y′′(x) − 1

x
y′(x) = f (x, y, xy′), 0 < x < 1. (3)

Chamber [1] considered the case when f (x, y, xy′) = ey . His model was based on
Arrhenius law.

In this case we consider cylindrical vessel and there is another concentric cylinder
inside the cylindrical vessel which we can use to monitor the temperature inside the
vessel. We consider the following three point boundary condition,

y′(0) = 0, y(1) = δy(η), (4)

where δ > 0, 0 < η < 1. The boundary condition at x = 1 is the temperature at
the walls of outer cylinder which is related to the temperature at walls at x = η of an
interior cylinder by y(1) = δy(η). This model can help us to maintain the required
temperature interior to the vessel which is otherwise not possible.

Several other real life problems are governed by similar equations, e.g., Polytropic
and Isothermal Gas Spheres [2], Electrohydrodynamics [3]). Lots of results are avail-
able for such applications and their generalizations for two point BVPs (see [4–12]).

Multipoint BVPs has been studied in detail for n = 0 (see [13–21]). To the best
of our knowledge for n ≥ 1, less results are found. Recently, Verma et al. [22] and
Singh et al. [23] established the existence results for n = 2 and n = 1, respectively
for f ≡ f (x, y).

The prime objective of this work is to prove some new inequalities based on Bessel
and modified Bessel functions and establish the new existence results for (3)–(4) in a
region D := {(x, u, xv) ∈ [0, 1] × R2 : β0(x) ≤ u ≤ α0(x)} or ˜D := {(x, u, xv) ∈
[0, 1]× R2 : α0(x) ≤ u ≤ β0(x)} by using the monotone iterative method with upper
and lower solutions that are reverse ordered and well ordered. The functions β0(x) and
α0(x) are called upper and lower solutions of nonlinear three point SBVPs, (3)–(4),
respectively. The function β0(x) satisfies the differential inequalities −(xβ ′

0(x))′ ≥
x f (x, β0, xβ ′

0), β ′
0(0) = 0, β0(1) ≥ δβ0(η), and the function α0(x) satisfies the

reverse differential inequalities. We further assume that

(F1) the function f : D (or ˜D) → R is continuous on D (or ˜D);
(F2) for all (x, u1, xv), (x, u2, xv) ∈ D (or ˜D),

(a) when λ > 0, there exist a constant M1 ≥ 0 in the region D such that

u1 ≤ u2 	⇒ f (x, u2, xv) − f (x, u1, xv) ≤ M1(u2 − u1);
(b) when λ < 0, there exist a constant M2 ≥ 0 in the region ˜D such that

u1 ≤ u2 	⇒ f (x, u2, xv) − f (x, u1, xv) ≥ −M2(u2 − u1);
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(F3) there exist N ≥ 0 such that for all (x, u, xv1), (x, u, xv2) ∈ D (or ˜D),

| f (x, u, xv2) − f (x, u, xv1)| ≤ N |xv2 − xv1|.

We consider the following monotone iterative scheme for nonlinear three point
SBVPs (3)–(4),

−y′′
n+1(x) − 1

x
y′

n+1(x) − λyn+1(x)

= f (x, yn, xy′
n) − λyn(x), y′

n+1(0) = 0, yn+1(1) = δyn+1(η), (5)

where sup
(

∂ f
∂y

)

= λ ∈ R \ {0} and f (x, y, xy′) satisfies (F1), (F2) and (F3).

2 Preliminaries

2.1 The linear model

In this section we discuss the following linear model corresponding to the nonlinear
three point SBVPs (3)–(4),

−(xy′(x))′ − λxy(x) = x h(x), 0 < x < 1, (6)

y′(0) = 0, y(1) = δy(η) + b, (7)

where h ∈ C(I ), I = [0, 1] and b is any constant. Now by using the Lommel’s
transformation (see [23,24]), we obtain the following bounded solutions (near origin)
of the corresponding homogeneous differential xy′′ + y′ + λxy(x) of (6), i.e.,

y1(x, λ) =
{

J0

(

x
√

λ
)

, if λ > 0;
I0

(

x
√|λ|) , if λ < 0,

(8)

defined in terms of Bessel’s and Modified Bessel’s functions.

2.2 Green’s function

The solution of nonhomogeneous linear model (6)–(7) with the help of Green’s func-
tions are discussed in this subsection. We also define the constant sign of Green’s
functions and on the basis of sign of λ, we divide this subsection into the following
two cases:

2.2.1 Case-I : When λ > 0

Assume that

(H0) : 0 < λ < y2
0,1, δ Y0

(

η
√

λ
)

− Y0

(√
λ
)

≤ 0, J0

(√
λ
)

− δ J0

(

η
√

λ
)

< 0.

where y0,1 is the first positive zero of Y0(x) (see Remark (2.1) of [23]).
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Lemma 2.1 (See Lemma 3.1 of [23]) For 0 < λ < y2
0,1 we have the following

inequality

J0

(

x
√

λ
)

Y0

(

t
√

λ
)

− Y0

(

x
√

λ
)

J0

(

t
√

λ
)

≤ 0, 0 ≤ t, x ≤ 1,

such that t ≤ x and x is fixed.

Lemma 2.2 Let y ∈ C2(I ) be a solution of nonhomogeneous linear three point SBVPs
(6)–(7) then

y(x) =
b J0

(

x
√

λ
)

J0

(√
λ
)

− δ J0

(

η
√

λ
) −

∫

0

1

t G(x, t)h(t)dt . (9)

Here G(x, t) is the solution of corresponding homogeneous linear differential equa-
tion, with homogeneous boundary conditions of linear three point SBVPs (6)–(7), and
defined as

G(x, t) =
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

π J0

(

x
√

λ
)(

J0

(

t
√

λ
)(

δY0

(

η
√

λ
)

−Y0

(√
λ
))

+Y0

(

t
√

λ
)(

J0

(√
λ
)

−δ J0

(

η
√

λ
)))

2
(

J0

(√
λ
)

−δ J0

(

η
√

λ
)) , 0 ≤ x ≤ t ≤ η;

π J0

(

t
√

λ
)(

J0

(

x
√

λ
)(

δY0

(

η
√

λ
)

−Y0

(√
λ
))

+Y0

(

x
√

λ
)(

J0

(√
λ
)

−δ J0

(

η
√

λ
)))

2
(

J0

(√
λ
)

−δ J0

(

η
√

λ
)) , t ≤ x, t ≤ η;

π J0

(

x
√

λ
)(

J0

(√
λ
)

Y0

(

t
√

λ
)

−Y0

(√
λ
)

J0

(

t
√

λ
))

2
(

J0

(√
λ
)

−δ J0

(

η
√

λ
)) , x ≤ t, η ≤ t;

π
(

J0

(

x
√

λ
)(

δ J0

(

η
√

λ
)

Y0

(

t
√

λ
)

−Y0

(√
λ
)

J0

(

t
√

λ
))

+
(

J0

(√
λ
)

−δ J0

(

η
√

λ
))(

J0

(

t
√

λ
)

Y0

(

x
√

λ
)))

2
(

J0

(√
λ
)

−δ J0

(

η
√

λ
)) , η ≤ t ≤ x ≤ 1,

and if (H0) holds then G(x, t) ≥ 0.

Proof See the proof of Lemmas 3.2 and 3.3 of [23].

2.2.2 Case-II : when λ < 0

Assume that

(H ′
0) : λ < 0, δ K0

(

η
√|λ|) − K0

(√|λ|) ≥ 0, I0
(√|λ|) − δ I0

(

η
√|λ|) > 0.

Lemma 2.3 (See Lemma 3.4 of [23]) For sufficiently small λ < 0 we have the fol-
lowing inequality

I0

(

t
√|λ|

)

K0

(

x
√|λ|

)

− I0

(

x
√|λ|

)

K0

(

t
√|λ|

)

≤ 0, 0 ≤ t, x ≤ 1,

such that t ≤ x and x is fixed.

Lemma 2.4 Let λ < 0 and y ∈ C2(I ) be a solution of nonhomogeneous linear three
point SBVPs (6)–(7) then
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y(t) = b I0
(

x
√|λ|)

I0
(√|λ|) − δ I0

(

η
√|λ|) −

∫ 1

0
t G(x, t)h(t)dt . (10)

Here G(x, t) is the solution of corresponding homogeneous linear differential equa-
tion, with homogeneous boundary conditions of linear three point SBVPs (6)–(7), and
defined as

G(x, t)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

I0(x
√|λ|)(K0(t

√|λ|)(δ I0(η
√|λ|)−I0(

√|λ|))+I0(t
√|λ|)(K0(

√|λ|)−δK0(η
√|λ|)))

I0(
√|λ|)−δ I0(η

√|λ|) , 0 ≤ x ≤ t ≤ η;
I0(t

√|λ|)(I0(x
√|λ|)(K0(

√|λ|)−δK0(η
√|λ|))−K0(x

√|λ|)(I0(
√|λ|)−δ I0(η

√|λ|)))
I0(

√|λ|)−δ I0(η
√|λ|) , t ≤ x, t ≤ η;

I0(x
√|λ|)(K0(

√|λ|)I0(t
√|λ|)−I0(

√|λ|)K0(t
√|λ|))

I0(
√|λ|)−δ I0(η

√|λ|) , x ≤ t, η ≤ t;
I0(x

√|λ|)(K0(
√|λ|)I0(t

√|λ|)−δ I0(η
√|λ|)K0(t

√|λ|))−(I0(
√|λ|)−δ I0(η

√|λ|))(I0(t
√|λ|)K0(x

√|λ|))
I0(

√|λ|)−δ I0(η
√|λ|) , η ≤ t ≤ x ≤ 1,

and if
(

H ′
0

)

holds then G(x, t) ≤ 0.

3 Maximum and anti maximum principles

Proposition 3.1 Suppose (H0) holds, such that y ∈ C2(I ) and y satisfies

−(xy′(x))′ − λxy(x) ≥ 0, 0 < x < 1,

y′(0) = 0, y(1) ≥ δy(η),

then y(x) ≤ 0, ∀x ∈ [0, 1].
Proof By using the equation (9) with assumption (H0) and constant sign of Green
function (G ≥ 0), we can easily prove that y(x) ≤ 0.

Similarly, by using the equations (10) and assumption (H ′
0), we can prove the

following Proposition.

Proposition 3.2 Suppose (H ′
0) holds, y ∈ C2(I ) and y satisfies

−(xy′(x))′ − λxy(x) ≥ 0, 0 < x < 1,

y′(0) = 0, y(1) ≥ δy(η),

then y(x) ≥ 0, ∀x ∈ [0, 1].

4 Inequalities and existence results

In this section we discuss our main results. We prove some new inequalities based
upon Bessel and Modified Bessel function and establish the new existence results for
both cases, i.e., when upper and lower solutions are well ordered or in reverse order.
We divide this section into the following two subsections.
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4.1 Reverse ordered lower and upper solutions (α0 ≥ β0)

Lemma 4.1 If 0 < λ < y2
0,1, then the Bessel functions J0 and J1 satisfy the following

inequality

(λ − M1)J0(x
√

λ) − N x
√

λJ1(x
√

λ) ≥ 0,

for all x ∈ [0, 1], whenever

λ ≥ M1 + N 2

2
+ N

2

√

N 2 + 4M1 , (11)

such that M1, N ∈ R+.

Proof When 0 < λ < y2
0,1, the Bessel functions satisfy the inequality J0(x

√
λ) ≥

J1(x
√

λ), for all x ∈ [0, 1], which gives us

(λ − M1)J0(x
√

λ) − N x
√

λJ1(x
√

λ) ≥
(

(λ − M1) − N
√

λ
)

J0(x
√

λ).

Now right hand side will be positive provided
(

(λ − M1) − N
√

λ
)

≥ 0, which gives

λ ≥ M1 + N 2

2 + N
2

√

N 2 + 4M1. Hence the lemma.

Remark 4.1 It is clear that G(x, t) ≥ 0, for all x, t ∈ [0, 1], when (H0) holds. As
G(x, t) satisfies

−(xG ′(x))′ − λxG(x) = 0, 0 < x < 1,

G ′(0) = 0, G(1) = δG(η),

we deduce that G ′(x, t) ≤ 0 and xG ′(x, t) ≥ λ
λ−1 G(x, t) for λ < 1.

Lemma 4.2 Suppose (H0) holds and such that 1 > λ ≥ M1 then for all x, t ∈ [0, 1],
we have the inequality

(λ − M1)G(x, t) + N x (sign y′)∂G(x, t)

∂x
≥ 0,

whenever (λ − M1) − N λ
1−λ

≥ 0 and M1, N ∈ R+.

Proof From the above Remark 4.1, it is clear that to prove the above inequality, it is
sufficient to prove (λ−M1)G(x, t)+N x ∂G(x,t)

∂x ≥ 0. Now again by using Remark 4.1,
we can write

(λ − M1)G(x, t) + N x
∂G(x, t)

∂x
≥

(

(λ − M1) − N
λ

1 − λ

)

G(x, t). (12)

Now if (λ − M1) − N λ
1−λ

≥ 0, then right hand side will we positive. This completes
the lemma.
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Remark 4.2 If yn = αn+1 − αn , and f is defined in domain D, then we observe that

−(xy′
n)′ − λxyn = x f (x, αn, xα′

n) + (xα′
n)′, (13)

y′
n(0) = 0, yn(1) = δyn(η) (14)

and if we assume that αn is lower solution of (3)–(4), then (13)–(14) are reduced into
the following SBVP

−(xy′
n)′ − λxyn = x f (x, αn, xα′

n) + (xα′
n)′ ≥ 0,

y′
n(0) = 0, yn(1) ≥ δyn(η).

Finally, by using the Proposition 3.1, we get yn ≤ 0, i.e., αn+1 ≤ αn . Similarly we
can get βn+1 ≥ βn , where βn is an upper solution of (3)–(4).

Proposition 4.1 Suppose (H0) holds, the source function f satisfies (F1), (F2) and

(F3) and there exist 0 < max{M1, M1 + N 2

2 + N
2

√

N 2 + 4M1} ≤ λ < 1, such that
(λ − M1) − N λ

1−λ
≥ 0 is valid. Then the functions αn and βn, satisfy the following

relations

(a) αn+1 ≤ αn, for all n ∈ N, where αn is a lower solution of (3)–(4),
(b) βn+1 ≥ βn, for all n ∈ N, where βn is an upper solution of (3)–(4),

and αn, βn are defined recursively by (5).

Proof The above claim is proved by using the principle of Mathematical Induction.
Claim (a) holds for n = 0, i.e., α1 ≤ α0 (see Remark (4.2)). Now suppose that claim
is true for n − 1, i.e., αn ≤ αn−1, where αn−1 is lower solution of (3)–(4), and we will
show that the claim is true for n.

Let y = αn − αn−1, then it is clear that y satisfies

−(xy′)′ − λxy = (xα′
n−1)

′ + x f (x, αn−1, xα′
n−1) ≥ 0, (15)

y′(0) = 0, y(1) ≥ δy(η). (16)

To show that αn+1 ≤ αn , we have to prove that αn is a lower solution of (3)–(4), i.e.,

− (xα′
n)′ − x f (x, αn, xα′

n) ≤ x
[

(λ − M1)y + N (sign y′)xy′] , (17)

where right hand side should be negative. Now, by using equation (9) it is sufficient
to prove

(λ − M1)J0(x
√

λ) − N x
√

λJ1(x
√

λ) ≥ 0,

(λ − M1)G(x, t) + N x (sign y′)∂G(x, t)

∂x
≥ 0,

for all x, t ∈ [0, 1]. Which are true by Lemmas 4.1 and 4.2. Hence αn+1 ≤ αn .
Using similar analysis we can prove the claim (b). Hence βn+1 ≥ βn .

123



J Math Chem (2015) 53:670–684 677

Proposition 4.2 Suppose (H0) holds, the source term f satisfies (F1), (F2) and (F3)

and there exist 0 < max{M1, M1 + N 2

2 + N
2

√

N 2 + 4M1} ≤ λ < 1 such that (λ −
M1) − N λ

1−λ
≥ 0 and for all x ∈ [0, 1]

f (x, β(x), xβ ′(x)) − f (x, α(x), xα′(x)) − λ(β − α) ≥ 0,

is valid. Then for all n ∈ N, the functions αn and βn defined by (5), satisfy αn ≥ βn.

Proof Suppose yi = βi −αi , it is clear that yi satisfies the singular differential equation

− (xy′
i )

′ − xλyi = x
[

f (x, βi−1(x), xβ ′
i−1(x)) − f (x, αi−1(x), xα′

i−1(x))

−λ(βi−1 − αi−1)
]

, (18)

= x[hi−1], (19)

where hi−1 = f (x, βi−1(x), xβ ′
i−1(x))− f (x, αi−1(x), xα′

i−1(x))−λ(βi−1 −αi−1).

To prove βi ≤ αi , for all i ∈ N, we have to show that hi−1 ≥ 0, for all i ∈ N. We
use Mathematical Induction. For i = 1, the equation (18) is reduced into

−(xy′
1)

′ − xλy1 = x
[

f (x, β0(x), xβ ′
0(x)) − f (x, α0(x), xα′

0(x)) − λ(β0 − α0)
]

,

= x[h0],

by using the conditions (F2) and (F3), we can easily show that h0 ≥ 0, and y′
1(0) =

0, y1(1) = δy1(η). Using Proposition 3.1, we deduce that y1 ≤ 0, i.e., β1 ≤ α1.
Now suppose hn−2 ≥ 0 and βn−1 ≤ αn−1, and we have to prove that hn−1 ≥ 0 and
βn ≤ αn .

As

hn−1 = f (x, βn−1(x), xβ ′
n−1(x)) − f (x, αn−1(x), xα′

n−1(x)) − λ(βn−1 − αn−1),

(20)

= − [

(λ − M1)yn−1 + N (sign y′
n−1)xy′

n−1

]

. (21)

where yn−1 = βn−1 − αn−1 is the solutions of nonhomogeneous linear BVP (6)–(7),
with hn−2 ≥ 0 and y′

n−1(0) = 0, yn−1(1) = δyn−1(η). We can follow the same
analysis as we did in Proposition 4.1 and we have hn−1 ≥ 0, and y′

n(0) = 0, yn(1) =
δyn(η). By using Proposition 3.1, we deduce that yn ≤ 0, i.e., αn ≥ βn .

4.1.1 Priori’s bound

Lemma 4.3 If f (x, y, xy′) satisfies

(FR) For all (x, y, xy′) ∈ D, | f (x, y, xy′)| ≤ ϕ(|xy′|); where ϕ : R+ → R+ is
continuous and satisfies

1

2
<

∫ ∞

l0

ds

ϕ(s)
,
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where l0 = sup
[0,1]

2 |xα0(x)|, then there exists R > 0 such that any solution of

−(xy′(x))′ ≥ x f (x, y, xy′), 0 < x < 1, (22)

y′(0) = 0, y(1) ≥ δy(η), (23)

with y ∈ [β0(x), α0(x)] satisfies ‖xy′‖∞ ≤ R.

Proof We can divide this proof into following three cases:
Case : (i) Suppose that the nature of the solution of nonlinear three point SBVP (3)–

(4) is non monotone throughout the interval. First we consider the interval (x0, x] ∈
[0, 1], and assume that the slope of the solution at point x0 is zero, and y′(x) > 0, for
all x > x0. Integrating the equation (22) from x0 to x , we get

∫ xy′

0

ds

ϕ(s)
≤ 1

2
.

We choose R such that

∫ xy′

0

ds

ϕ(s)
≤ 1

2
<

∫ R

l0

ds

ϕ(s)
≤

∫ R

0

ds

ϕ(s)
.

This gives xy′(x) ≤ R.
Now suppose that the slope of the solution at point x0 is zero, and y′(x) < 0, for

all x < x0. Following the same analysis (as we did above), we get −xy′(x) ≤ R.
Case : (i i) Suppose the nature of the solution of nonlinear three point SBVP (3)–(4)

is monotonically increasing throughout the interval, i.e., y′(x) > 0 in (0, 1), then (by
using Mean value Theorem) ∃ a τ ∈ (0, 1), such that

y′(τ ) = y(1) − y(0)

1 − 0
≤ 2|α0|.

Integrating the equation (22) from τ to x and then using the assumption (FR) we
get,

∫ xy′

0

ds

ϕ(s)
≤ 1

2
+

∫ l0

0

ds

ϕ(s)
<

∫ R

0

ds

ϕ(s)
,

which gives xy′(x) ≤ R.

Similarly, when y, i.e., the solution of nonlinear three point SBVP (3)–(4) is
monotonically decreasing throughout the interval, then we get −xy′(x) ≤ R.

Similarly we can prove the following result.

Lemma 4.4 If f (x, y, xy′) satisfies (FR), then there exists R > 0 such that any
solution of
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−(xy′(x))′ ≤ x f (x, y, xy′), 0 < x < 1, (24)

y′(0) = 0, y(1) ≤ δy(η), (25)

with y ∈ [β0(x), α0(x)] satisfies ‖xy′‖∞ ≤ R.

Theorem 4.1 Suppose (H0) holds, the source term f satisfies (F1), (F2) and (F3)

and there exist λ > 0 such that 1 > λ ≥ max{M1, M1 + N 2

2 + N
2

√

N 2 + 4M1} and
(λ − M1) − N λ

1−λ
≥ 0, and for all x ∈ [0, 1]

f (x, β(x), xβ ′(x)) − f (x, α(x), xα′(x)) − λ(β − α) ≥ 0,

is valid, then the sequences (αn) and (βn) defined by (5), starting with α and β as
initial guesses, converge monotonically in C1([0, 1]) to solution v and u of nonlinear
BVP (3)–(4), such that for all x ∈ [0, 1], β ≤ u ≤ v ≤ α. Any solution z(x) of (3)–(4)
in D satisfies u(x) ≤ z(x) ≤ v(x).

Proof We can easily show that

α = α0 ≥ α1 ≥ · · · ≥ αn ≥ · · · ≥ βn ≥ · · · ≥ β1 ≥ β0 = β. (26)

with the help of Propositions 4.1 and 4.2, it is clear that {αn} and {βn} are monotone
and bounded. Now by using Dini’s theorem these sequences converges uniformly.
Suppose αn → v and βn → u. By using Priori bound and (F1), we can find that
the sequences {xα′

n} and {xβ ′
n} are equibounded and equicontinuous in C1([0, 1]),

i.e., there exist uniformly convergent subsequences {xα′
nk} and {xβ ′

nk} in C1([0, 1])
(Arzela-Ascoli Theorem). It is easy to check that xα′

n −→ xv′ and xβ ′
n −→ xu′,

whenever αn → v and βn −→ u.

As equation (9) represents the solution of (5) with h(x) = f (x, yn, xyn) − λyn .
By taking limit as n → ∞ on both sides of (9), we get that v and u are solutions of
nonlinear three point SBVPs (3)–(4). Any solution z(x) in D plays the role of α0, i.e.,
z(x) ≤ v(x). Similarly we get z(x) ≥ u(x).

4.2 Well-ordered lower and upper solutions (α0 ≤ β0)

Lemma 4.5 Let λ < 0, then Modified Bessel functions I0 and I1 satisfy the following
inequality

(λ + M2)I0(x
√|λ|) + N x

√|λ|I1(x
√|λ|) ≤ 0,

for all x ∈ [0, 1] if λ satisfies

λ ≤ −M2 − N 2

2
− N

2

√

N 2 + 4M2 , (27)

where M2, N ∈ R+.
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Proof When λ < 0, the Modified Bessel’s function I0 and I1 satisfy the inequality
I0(x

√|λ|) ≥ I1(x
√|λ|), for all x ∈ [0, 1], which gives

(λ + M2)I0(x
√|λ|) + N x

√|λ|I1(x
√|λ|) ≤

(

(M2 + λ) + N
√|λ|

)

I0(x
√|λ|).

It is clear that we get the required solution provided (M2 + λ) + N
√|λ| ≤ 0, i.e.,

λ ≤ −M2 − N 2

2
− N

2

√

N 2 + 4M2.

Remark 4.3 By argument similar to Remark 4.1, we get G ′(x, t) ≤ 0 and
−xG ′(x, t) ≤ λG(x, t).

Lemma 4.6 Suppose (H ′
0) holds and λ < 0 such that λ + M2 ≤ 0, then for all

x, t ∈ [0, 1], we have the inequality

(λ + M2)G(x, t) + N x (sign y′)∂G(x, t)

∂x
≥ 0,

whenever (λ + M2) − Nλ ≤ 0 such that M2, N ∈ R+.

Proof See the proof of Lemma 4.2, with Remark 4.3.

Remark 4.4 By arguments, similar to Remark 4.2, we can show that αn+1 ≥ αn and
βn+1 ≤ βn , in ˜D.

Proposition 4.3 Suppose (H ′
0) holds, f satisfies (F1), (F2) and (F3) and there exist

λ < 0 such that λ ≤ min{−M2,−M2 − N 2

2 − N
2

√

N 2 + 4M2,− M2
1−N }, then the

functions αn and βn, satisfy the following relations

(a) αn+1 ≥ αn, for all n ∈ N, where αn is lower solution of (3)–(4),
(b) βn+1 ≤ βn, for all n ∈ N, where βn is an upper solution of (3)–(4),

where αn and βn are defined recursively by (5).

Proof See the proof of Proposition 4.1 with Lemmas 4.5, 4.6 and Remark 4.4.

Proposition 4.4 Suppose (H ′
0) holds, the source term f satisfies (F1), (F2) and (F3)

and λ < 0 such that λ ≤ min{−M2,−M2 − N 2

2 − N
2

√

N 2 + 4M2,− M2
1−N }, and for

all x ∈ [0, 1]

f (x, β(x), xβ ′(x)) − f (x, α(x), xα′(x)) − λ(β − α) ≥ 0,

is valid. Then for all n ∈ N, the functions αn and βn defined by (5), satisfy αn ≤ βn.

Proof Proof is similar to the proof of Proposition 4.2.
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Lemma 4.7 If f (x, y, xy′) satisfies

(FW ) For all (x, y, xy′) ∈ ˜D, | f (x, y, xy′)| ≤ ϕ(|xy′|); where ϕ : R+ → R+ is
continuous and satisfies

1

2
<

∫ ∞

l0

ds

ϕ(s)
,

where l0 = sup
[0,1]

2 |xβ0(x)|, then there exists R > 0 such that any solution of

−(xy′(x))′ ≥ x f (x, y, xy′), 0 < x < 1, (28)

y′(0) = 0, y(1) ≥ δy(η), (29)

with y ∈ [α0(x), β0(x)] satisfies ‖xy′‖∞ ≤ R.

Lemma 4.8 If f (x, y, xy′) satisfies (FW ), then there exists R > 0 such that any
solution of

−(xy′(x))′ ≤ x f (x, y, xy′), 0 < x < 1, (30)

y′(0) = 0, y(1) ≤ δy(η), (31)

with y ∈ [α0(x), β0(x)] satisfies ‖xy′‖∞ ≤ R.

Theorem 4.2 Suppose (H ′
0) holds, the source term f (x, y, xy′) satisfies (F1), (F2)

and (F3) and λ < 0 be such that λ ≤ min{−M2,−M2− N 2

2 − N
2

√

N 2 + 4M2,− M2
1−N },

and for all x ∈ [0, 1]
f (x, β(x), xβ ′(x)) − f (x, α(x), xα′(x)) − λ(β − α) ≥ 0,

is valid, then the sequences (αn) and (βn) defined by (5), , starting with α and β as
initial guesses, converge monotonically in C1([0, 1]) to solution v and u of nonlinear
BVP (3)–(4), such that for all x ∈ [0, 1], α ≤ v ≤ u ≤ β. Any solutions z(x) of
(3)–(4) in ˜D satisfy v(x) ≤ z(x) ≤ u(x).

Proof The proof of this Theorem follows same analysis as we did in Theorem 4.1.

5 Examples

Numerical Examples are discussed in this section which help us to validate our ana-
lytical results, and show that ∃ a λ ∈ R \ {0} which satisfies the sufficient conditions
of Theorems 4.1, and 4.2.

Example 5.1 Consider the nonlinear three point SBVP

−y′′(x) − 1

x
y′(x) = (y(x))3

80
+ xy′

7
+ sin x

160
, (32)

y′(0) = 0, y(1) = 3y

(

1

4

)

. (33)
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Fig. 1 Plot of (H0) and
(λ − M1) − N λ

1−λ
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J0 3 J0
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0.142857
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2

0

λ

λ

λ λ

λ

λ

Here solution of nonlinear three point SBVP (32)–(33) has α0 = 1 and β0 = −1
as lower and upper bounds, respectively. This is a reverse ordered case. The nonlinear
sources term satisfies the conditions (F1), (F2) and (F3) in domain D. Here Lipschitz
constant are M1 = 3

80 and N = 1
7 . From Fig. 1 it is clear that we can find out a range

of λ > 0 such that

(

max

{

M1, sup

(

f (x, β, xβ ′) − f (x, α, xα′)
β − α

)

, M1 + N 2

2

+ N

2

√

N 2 + 4M1

}

< λ < y2
0,1

)

,

i.e., 0.0771902 ≤ λ < 1. So that (H0), and (λ − M1) − N λ
1−λ

≥ 0 are satisfied. Thus
Theorem 4.1 is applicable here.

Example 5.2 Consider the nonlinear three point SBVP

−y′′(x) − 1

x
y′(x) = (ex )

100
− y3

30
+ xy′

5
, (34)

y′(0) = 0, y(1) = 0.6y

(

2

5

)

. (35)

Here solution of nonlinear three point SBVP (32)–(33) has α0 = −1 and β0 = 1
as lower and upper bounds, respectively. This is a well ordered case. The nonlinear
sources term satisfies the conditions (F1), (F2) and (F3) in domain ˜D. Here Lipschitz
constant are M2 = 1

10 and N = 1
5 . From Fig. 2, it is clear that we can find out a range

of λ < 0 such that
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Fig. 2 Plot of (H ′
0)

0.6 K0 0.4 K0

I0 0.6 I0 0.4

20 15 10 5

1

1

2

3

4

5

λ

λ λ

λλ

λ ≤ min

{

−M2,−M2 − N 2

2
− N

2

√

N 2 + 4M2,

− M2

1 − N
, inf

(

f (x, β, xβ ′) − f (x, α, xα′)
β − α

)}

,

i.e., λ ≤ −0.186332. So that (H ′
0), is satisfied. Thus Theorem 4.2 is applicable here.
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